
Studies in Movement (Set 1)

For Violoncello solo

Nigel Morgan

Symbolic Composer code annotated by Phil Legard

This study score has been downloaded from the website archive of composer
Nigel Morgan. The PDF file is solely for personal study, repertoire research or
educational reference. It is not intended for use in public performance except in
educational situations when an extract is required for illustration purposes.

Performance scores and parts are available from Tonality Systems Press in two
formats: as standard printed and bound paper copies, and as PDF electronic
masters carrying a special electronic license for an unlimited number of
performances over an agreed period. For more information please e-mail
Tonality Systems Press.

http://www.nigel-morgan.co.uk
mailto:tonalitysystems@mac.com

Studies in Movement (Set 1)

For violoncello solo

Nigel Morgan

Annotated SCOM code by Phil Legard

The sonic quality of the cello is ideally suited to slow, expressive, languorous
music. The instrument is also blessed with a wide compass: a rich sonorous
bass register way up into the territory of the violin, and here with a powerful,
unique and incisive timbre. But the music contained in these Studies in
Movement favours lightness, speed and agility, and that dance-like fleet-of-
footness found in the best Baroque performance practice, and notably in the
dance movements of the six Cello Suites of J.S.Bach.

Studies in Movement (Set 1) is one of a continuing series of works that take
their starting points – harmonically at least – from the patterns given in
Nicolas Slonimsky’s Thesaurus of Scales and Melodic Patterns. An overview
of Nigel Morgan’s music derived from Slonimsky series can be found here.

The Studies presented here are a preface to Ideograms in the composer’s
series Facts of Life. This is an expanding collection of music for instruments
and Active Notation of which Ideograms for cello solo, designed for on-line
distribution and performance, is part. Both works have been inspired by the
remarkable cellist Peter Gregson, a musician who is able to bring a unique
experience of Baroque techniques together with a fascination for the latest
technological innovations (he has collaborated with MIT Media Lab and
Banff Centre for the Arts).

The following pages present the Symbolic Composer code that was written by
Nigel Morgan to realize the Studies in Movement. If you wish to compile the
code with your own version of Symbolic Composer, first evaluate the
additional functions given in Appendix A, after which the code for each
movement should execute without any issues.

http://www.nigel-morgan.co.uk/index.php?name=News&file=article&sid=188

;; Nine Studies in Movement (No.1 Continuum)

;; functions

(defun gen-palindrome-r (pat &optional seed)
; randomizes the output length of the palindrome
(if seed
(init-rnd seed))
 (prog (out len)
 (setq len (- (length pat) 1))
 (setq out
 (symbol-trim (- (+ (length pat) len)(get-random 1 len))
 (gen-palindrome pat)))
 (return out)))

(defun symbol-interpolate-x (val start end)
(do-section :all '(gen-palindrome-r x) (symbol-interpolate val start end)))

;; material

(setq s85u '(a -c -b g e f))
(setq s85d '(m f e g -b -c))
(setq s86u '(a -d -b g d f))
(setq s86d '(m f d g -b -d))
(setq s87u '(a -e -b g c f))
(setq s87d '(m f c g -b -e))
(setq s88u '(a -f -b g b f))
(setq s88d '(m f b g -b -f))
(setq s89u '(a -d -c g d e))
(setq s89d '(m e d g -c -d))
(setq s90u '(a -e -c g c e))
(setq s90d '(m e c g -c -e))
(setq s91u '(a -f -c g b e))
(setq s91d '(m e b g -c -f))
(setq s92u '(a -e -d g c d))
(setq s92d '(m d c g -d -e))
(setq s93u '(a -f -d g b d))
(setq s93d '(m d b g -d -f))

This function creates a phrase to which is appended a
palindrome with a random length. For example (a b c d)
may yield (a b c d c), (a b c d c b) or (a b c d c b a).

The basic symbol - interpolate function
transforms one phrase into another over a given
series of steps, so (a b c) to (a g e) over four steps
might look like this: (a b c) (a d d) (a e d) (a g e)
This new function, symbol-interpolate-x, creates
an interpolation that is then annexed by a
palindromic version of the phrase through the use
of gen-palindrome-r.

Slonimsky patterns 85-93 defined as sets of both
ascending and descending pitch symbols.

(setq mat-1 (symbol-interpolate-x 8 s85u s93d)
 mat-2 (symbol-interpolate-x 6 s86u s92d)
 mat-3 (symbol-interpolate-x 4 s87u s91d)
 mat-4 (symbol-interpolate-x 2 s88u s90d)
 mat-5 (symbol-interpolate-x 4 s89u s85d)
 mat-6 (symbol-interpolate-x 2 s88u s86d)
 mat-7 (symbol-interpolate-x 3 s87u s85d)
 mat-8 (list s86d s87u)
 mat-9 (symbol-interpolate-x 5 s85d s88u)
 mat-10 (symbol-interpolate-x 5 s86d s89u)
 mat-11 (symbol-interpolate-x 5 s87d s90u)
 mat-12 (symbol-interpolate-x 5 s88d s91u)
 mat-13 (symbol-interpolate-x 5 s89d s92u)
 mat-14 (symbol-interpolate-x 5 s90d s93u))

(setq mat-A (append mat-1 mat-2 mat-3 mat-4 mat-5 mat-6 mat-7 mat-8)
 mat-B (append mat-9 mat-10 mat-11 mat-12 mat-13 mat-14))

(setq down-v (gen-dim 100 60 10)
 up-v (gen-cresc 60 110 10)
 mid1-v (gen-cresc-dim 50 90 12)
 mid2-v (gen-dim-cresc 96 55 12)
 cen1-v '(40 70 50)
 cen-v '(120 90 106))

(setq vel-pat-1 (list up-v mid2-v cen1-v cen1-v cen-v cen-v mid1-v down-v
 up-v mid2-v cen1-v cen-v mid1-v down-v
 up-v mid2-v mid2-v down-v
 up-v down-v
 up-v cen-v cen-v down-v
 up-v down-v
 up-v cen1-v down-v
 up-v down-v))

(setq vel-pat-2 (gen-repeat 6 (list down-v mid1-v cen-v mid2-v up-v)))

Define the basic material for the movement by creating
interpolations of differing length between pairs of
Slonimsky patterns. Note that mat-8 acts as a sort of
bridge between the two sets of material and simply
consists of pattern s86d followed by s87u.

The material is appended into two sections, mat-A and mat-B.
These will ultimately be brought together to constitute the pitch
material of the entire piece. However they are kept separate here
so that different rules can be applied to them when generating
durational data.

A series of velocity gestures are created. If these are
longer than the corresponding number of pitch symbols
then the extra velocity values will be omitted. If they are
shorter then the velocities will repeat.

The velocities defined above are assembled into a
dynamic scheme for the first half of the movement. Each
line corresponds to one of the series mat-1 to mat-8.

In the second half of the movement the dynamic scheme
repeats throughout. There are five interpolations in each
of the series mat-9 to mat-14, which are mapped to the
dynamic scheme down-v midl-v cen-v mid2-v up-v.

(setq dur-pat-1 '((1/8)(1/8) (1/16 1/16 1/32) (1/16 1/16 1/32)(1/8 1/16 1/32)(1/8 1/16 1/32)(1/8)(1/8)
 (1/8)(1/8)(1/16)(1/16)(1/8)(1/8)
 (1/8)(1/8)(1/8)(1/8)
 (1/8)(1/8)
 (1/8)(1/16)(1/16)(1/8)
 (1/16)(1/16)
 (1/16)(1/32) (1/16)
 (1/32)(1/32)
))

(setq dur-pat-2 (gen-repeat 6 '((1/8)(1/8) (1/8 1/16 1/32) (1/8) (1/16))))

(setq len-1 (do-section '(25 :end) '(change-length :divide 2 x :ratio)
 (gen-process '(symbol-repeat x y) (mapcar 'length mat-A) '(1/8) :list))

 len-2 (do-section '(= = = = x) '(change-length :divide 2 x :ratio)
 (gen-process '(symbol-repeat x y)

 (mapcar 'length mat-B) '(1/8) :list)))

;; score-template

(def-tonality
 cello (activate-tonality (chromatic f 3))
)

(def-symbol
 cello (append mat-A mat-B)
)

(def-length
 cello (append len-1 len-2)
)

In a similar manner to the dynamic content, the
durations are here defined by hand for the first part of
the movement and as a repeating series for the second.
Note that durations are separate from note lengths and
suggest articulations such as staccato. In which case we
find durations such as 1/16 may correspond to note
lengths of 1/8.

To define the length material for the first part of the
movement gen-process is used with symbol-repeat to
create groups of 1/8 values that correspond to the length
of the material. The last 25 of these groups are then
divided by two to give a series of 1/16 notes.

In the second section a simple template is used to
process every fifth phrase (- - - - x), dividing the default
length (1/8) by two.

(def-duration
 cello (append dur-pat-1 dur-pat-2)
)

(def-velocity
 cello (append vel-pat-1 vel-pat-2)
)

(def-zone
 cello (z-ratio-sc (append len-1 len-2))
; (3/4 9/8 7/8 9/8 1/1 3/4 7/8 3/4 1/1 7/8 9/8 5/4 3/4 1/1 3/4 5/4 5/4 9/8 9/8 7/8 1/1 7/8 7/8 7/8
; 7/16 9/16 9/16 7/16 1/2 3/8 3/8 9/8 9/8 5/4 3/4 9/16 5/4 3/4 9/8 3/4 9/16 9/8 1/1 1/1 9/8 7/16
; 7/8 9/8 5/4 7/8 5/8 5/4 1/1 3/4 1/1 1/2 5/4 9/8 7/8 3/4 3/8)
)

(def-channel
 cello 1
)

(def-tempo 100)

(compile-instrument-p "ccl;output:" "continuum-Fi"
 cello
)

#| mat-A
((a -c -b g e f) (c -b -b g d e d g -b) (d -b a g c c c) (f a a g b b b g a)
(h b a g a -b a g) (j c a g -b -c) (k c b g -c -e -c) (m d b g -d -f) (a -d -b g d f d g)
(c -c a g c d c) (f -b a g b b b g a) (h b b g -b a -b g b b) (k c b g -c -c) (m d c g -d -e -d g)
(a -e -b g c f) (e -b a g b c b g a -b) (i b a g -b -c -b g a b) (m e b g -c -f -c g b)
(a -f -b g b f b g -b) (m e c g -c -e -c) (a -d -c g d e d g) (e a a g c c c) (i c c g a a a)
(m f e g -b -c -b) (a -f -b g b f b) (m f d g -b -d -b g d) (a -e -b g c f c g -b) (g a c g a c a)
 (m f e g -b -c -b g) (m f d g -b -d) (a -e -b g c f))

mat-B
((m f e g -b -c -b g e) (j c d g a a a g d) (g a c g a c a g c a) (d -c a g a d)
(a -f -b g b f b g -b) (m f d g -b -d -b g d f) (j d c g a -b) (g b a g b a b g a)
(d -b -b g c c) (a -d -c g d e d g -c) (m f c g -b -e -b g c) (j d b g a -c a g)
(g a a g a a a g) (d -c -b g b c b g -b) (a -e -c g c e c) (m f b g -b -f -b) (j c a g a -d a g a)
(g a a g a a a g a a) (d -c -b g a c a) (a -f -c g b e b g -c -f) (m e d g -c -d -c g d e)
 (j c c g -b -c -b g) (g a a g a a) (d -c -c g b c b g) (a -e -d g c d c g) (m e c g -c -e -c g c e)
(j c b g -b -c -b g b) (g a a g a a a) (d -d -c g a b) (a -f -d g b d))
 |#

;; Nine Studies in Movement (No.2 Arrested Movement)

(setq s85u '(a -c -b g e f))
(setq s85d '(m f e g -b -c))
(setq s86u '(a -d -b g d f))
(setq s86d '(m f d g -b -d))
(setq s87u '(a -e -b g c f))
(setq s87d '(m f c g -b -e))
(setq s88u '(a -f -b g b f))
(setq s88d '(m f b g -b -f))
(setq s89u '(a -d -c g d e))
(setq s89d '(m e d g -c -d))
(setq s90u '(a -e -c g c e))
(setq s90d '(m e c g -c -e))
(setq s91u '(a -f -c g b e))
(setq s91d '(m e b g -c -f))
(setq s92u '(a -e -d g c d))
(setq s92d '(m d c g -d -e))
(setq s93u '(a -f -d g b d))
(setq s93d '(m d b g -d -f))

(setq i-1 '(a -c)
 i-2 '(-c -b)
 i-3 '(-b g)
 i-4 '(g e)
 i-5 '(e f)
 i-6 '(f a))

(setq m-1 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-1)
; (a -c -c -e -b -d g e e c f d)
 m-2 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-2)
; (-c -b -e -d -d -c e f c d d e)
 m-3 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-3)
; (-b g -d e -c f f m d k e l)
 m-4 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-4)
; (g e e c f d m k k i l j)
 m-5 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-5)
; (e f c d d e k l i j j k)
 m-6 (gen-process '(symbol-transpose x y) (mapcar 'symbol-to-integer s85u) i-6))
; (f a d -c e -b l g j e k f)

Here is the selection of Slonimsky patterns used
throughout the Studies. The second movement is based
around pattern 85, defined here by the name s85u.

Here six pairs of pitches are defined based on consecutive pairs of symbols from the
Slonimsky pattern s85u (a –c –b g e f). This movement uses a chromatic tonality where
pitch symbol a corresponds to C4. I-1, the first pair of pitches shown here, symbolically
describe a note moving down major second (e.g. (a –c) or (C4 Bb3)). I-2 describes a single
step upward ((-c -b) or (Bb3 B3)) and so on.

The Slonimsky series is converted into a set of
numerical values using symbol-to-integer. This
gives us the following series (0 –2 –1 6 4 5).
Each of the above symbol pairs are transposed
against each of these values, so (a –c) yields:

0 -2 1 6 4 5
a –c -c –e -b –d g e e f f d

We then have a series of phrases that extend the
original phrase in a highly self-similar (fractal)
manner.

(setq m-all (append m-1 m-2 m-3 m-4 m-5 m-6))

(symbol-divide 2 'setq 'x m-all)

(setq x0 '(a -c))
(setq x1 '(-c -e))
(setq x2 '(-b -d))
(setq x3 '(g e))
(setq x4 '(e c))
(setq x5 '(f d))
(setq x6 '(-c -b))
(setq x7 '(-e -d))
(setq x8 '(-d -c))
(setq x9 '(e f))
(setq x10 '(c d))
(setq x11 '(d e))
(setq x12 '(-b g))
(setq x13 '(-d e))
(setq x14 '(-c f))
(setq x15 '(f m))
(setq x16 '(d k))
(setq x17 '(e l))
(setq x18 '(g e))
(setq x19 '(e c))
(setq x20 '(f d))
(setq x21 '(m k))
(setq x22 '(k i))
(setq x23 '(l j))
(setq x24 '(e f))
(setq x25 '(c d))
(setq x26 '(d e))
(setq x27 '(k l))
(setq x28 '(i j))
(setq x29 '(j k))
(setq x30 '(f a))
(setq x31 '(d -c))
(setq x32 '(e -b))
(setq x33 '(l g))
(setq x34 '(j e))
(setq x35 '(k f))

Join all the above self-similar phrases into one long series.

Divide the complete phrase series into pairs. Give each
pair a name prefixed with x, as seen here in x0-x35.

(setq wave-gesture
 (cfunction
 (gen-sin 0.5 0.1 96 180 (gen-ramp 10 0.3 90))
 (list-a-scale 0 36)))

; (6 6 7 8 9 10 12 13 14 13 14 15 16 17 19 20 22 23 19 20 22
; 23 25 26 28 29 30 25 26 28 29 30 31 33 33 34 30 31 32 33 34
; 34 35 35 35 33 34 34 35 35 35 34 33 32 35 35 35 35 34 33 31
; 29 26 35 34 33 32 30 28 25 21 17 33 32 30 28 25 21 17 13 7
; 30 28 25 22 18 13 8 3 26 23 19 15 10 5 0)

(setq wave-gesture-r (symbol-trim 42 (reverse wave-gesture)))

(setq wave-A (eval-section-integer wave-gesture 'x 'list)
 wave-B (eval-section-integer wave-gesture-r 'x 'list))

(setq ins-pauses (e-insert
 (gen-collect nil 12 :list '(build-list '= (get-random 3 7)))
 (sort< (pick-random-n 12 (list-a-scale 6 90))) wave-A)
 ins-pauses-r (e-insert
 (gen-collect nil 12 :list '(build-list '= (get-random 2 5)))
 (sort< (pick-random-n 6 (list-a-scale 6 40))) wave-B))

(setq len-1 (gen-process '(symbol-repeat x y) (mapcar 'length ins-pauses) '(1/8) :list)
 len-1r (gen-process '(symbol-repeat x y) (mapcar 'length ins-pauses-r) '(1/8) :list))

A sine wave is modulated with a ramp wave to create a wavelike
gesture. Scale each value to between 0 and 36.

See the code for Array to explore a similar sine-ramp structure.

The numbers output by wave gesture are shown above. You can see that
the output beings begins in a predictable manner – simply going from
one value to the next until the effects of the ramp wave assert
themselves and the range of numbers become more varied. To create a
sort of coda once the series has reached its most varied point a second
series is formed by reversing and trimming the original.

For both wave outputs (the full series and the reverse & trimmed series)
replace each value with the corresponding pitch pair generated above , so
that (6 6 7 8 9 . . .) = (x6 x6 x7 x8 x9 . . .) = ((-c –b) (-c –b) (-e –d) (-d –c)
(e f) . . .)

Create a series of 12 empty phrases and interpolate
them into the series wave-A and wave-B.
For wave-A, build list is used in conjunction with
gen-collect to create 12 instances of phrases with
between 3 and 7 rest symbols, e.g. ‘(= = = =). 12
random values between 6 and 90 are chosen and
sorted into order. E-insert then inserts a pause
phrase at each of these points.

Use gen-process to execute symbol-repeat once for each phrase in
our series, creating corresponding groups of 1/8 length values. So,
((-c –b)(= = =)(-e –d)) becomes ((= =)(= = =)(= =)).

http://www.nigel-morgan.co.uk/modules.php?op=modload&name=News&file=article&sid=35

(setq mov-orn '(x x x x x x = = = = = = = = = = = = = = = x x x x x x x x = x x x x = = =
 = = = = = = = = = = = = = = = =
 = = = = = = = = = = = = = = x x = = = = = = = x x = = = = = = x x = = =
 = x = = = x x x x = x x x x x = x x =))

(setq mov-orn-r '(= = x = x x x = x x = = x = = x = x x = x = = = x x = = = = = x
 x = = = = = = x x = = = = = = = =))

(setq len-2 (do-section mov-orn '(length-repeat 2 x) len-1)
 len-2r (do-section mov-orn-r '(length-repeat 2 x) len-1r))

 (def-neuron edit-1
 (in 1 '0) '0
 (otherwise '1))

(setq ins-rest-p
 (e-position '1
 (run-neuron 'edit-1 (flatten (do-section :all '(e-count '= x) ins-pauses))))
 ins-rest-r
 (e-position '1
 (run-neuron 'edit-1 (flatten (do-section :all '(e-count '= x) ins-pauses-r)))))

(setq dyn-x (vector-to-list (vector-round 40 110 (gen-sin 0.5 0.1 96 108 (gen-ramp 10 0.3 108))))
 dyn (e-insert '((0)) ins-rest-p (symbol-divide 2 nil nil (symbol-interleave dyn-x
 (do-section :all '(car (change-length :sub 10 x))
 (symbol-divide 2 nil nil (symbol-repeat 2 dyn-x)))))))

A template is created corresponding to the length of each
series of phrases. This is used in conjunction with do-
section to execute the length-repeat function on selected
phrases. This divides existing lengths by a given factor in
this case 2, so (1/8 1/8) becomes (1/16 1/16 1/16 1/16).Create a neuron that will look at a series of values and return

0 for 0 and 1 for any other number, so (0 0 2 0 5 0 1)
becomes (0 0 1 0 1 0 1).

The number of rests for each phrase are counted using e-count within a do-section function. Running the results through the neuron defined
above will give us an overview of the relation of ‘sounding’ phrases to resting phrases (e.g. (0 0 1 0 1 0 1). The position of each phrase of rest
is then calculated using e-position to look for instances of the number 1 in the series, e.g. (2 4 6).

To create a dynamic scheme another sine wave modulated to a ramp wave is created. Where rests occur a (0) value is inserted into the series
using the position data obtained above. Since all other phrases are pairs the velocity for each is duplicated and then also has 10 subtracted.

(setq dyn-x-r (symbol-trim 42 (reverse dyn-x))
 dyn-r (e-insert '((0)) ins-rest-r (symbol-divide 2 nil nil (symbol-interleave dyn-x-r
 (do-section :all '(car (change-length :sub 10 x))
 (symbol-divide 2 nil nil (symbol-repeat 2 dyn-x-r)))))))
;; score

(def-tonality
 cello (activate-tonality (chromatic c 4))
)

(def-symbol
cello (append ins-pauses (do-section :all '(reverse-pairs x) ins-pauses-r))
)

(def-length
cello (append len-2 len-2r)
)

(def-velocity
cello (append dyn dyn-r)
)

(def-zone
cello (z-ratio-sc (append len-1 len-1r)))
#|
(1/4 1/4 1/4 1/4 1/4 1/4 3/8 3/4 1/4 1/4 1/4 1/4 3/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
1/4 3/4 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/4 7/8 1/4 1/4 1/4
1/4 1/4 1/4 1/4 1/4 1/4 1/2 1/4 1/4 1/4 1/4 1/4 3/4 1/4 1/4 1/2 5/8 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4
 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 3/8 1/4 1/4 1/4 3/8 1/4 1/2 1/2 1/4 1/2 1/4 1/4 1/4 1/4
1/4 1/2 1/4 1/4 1/4)
|#

(def-channel
cello 1
)

(def-tempo 120)

(compile-instrument-p "ccl;output:" "arrested-movement-4d"
 cello
)

Define the pitch, length and velocity content for the entire
piece by appending the two series together. The reverse-
pairs function is also run on the reversed & trimmed series
to create a true mirror image of the first series.

;; Nine Studies in Movement (No.3 Dance Figures)

;; material

(setq s85 '(a -c -b g e f)
 s86 '(a -d -b g d f)
 s87 '(a -e -b g c f)
 s88 '(a -f -b g b f)
 s89 '(a -d -c g d e)
 s90 '(a -e -c g c e)
 s91 '(a -f -c g b e)
 s92 '(a -e -d g c d)
 s93 '(a -f -d g b d))

(create-tonality tonal-s85 '(c 4 e 4 f 4 f# 4 a# 4 b 4))
(create-tonality tonal-s87 '(c 4 d 4 f 4 f# 4 g# 4 b 4))
(create-tonality tonal-s89 '(c 4 d# 4 e 4 f# 4 a 4 a# 4))
(create-tonality tonal-s91 '(c 4 c# 4 e 4 f# 4 g 4 a# 4))
(create-tonality tonal-s93 '(c 4 c# 4 d# 4 f# 4 g 4 a 4))
(create-tonality tonal-s92 '(c 4 d 4 d# 4 f# 4 g# 4 a 4))
(create-tonality tonal-s90 '(c 4 d 4 e 4 f# 4 g# 4 a# 4))
(create-tonality tonal-s88 '(c 4 d& 4 f 4 f# 4 g 4 b 4))
(create-tonality tonal-s86 '(c 4 d& 4 f 4 f# 4 g 4 b 4))

(create-tonality pizz-t '(c 3 g 3 d 4 a 4))

(setq tonal-1 (gen-repeat 10 (activate-tonality (tonal-s85 c 4)))
 tonal-2 (activate-tonality '((tonal-s85 c 4)(tonal-s85 c 4)(tonal-s87 c 4)
 (tonal-s87 c 4)(tonal-s89 c 4)(tonal-s89 c 4)
 (tonal-s91 c 4)(tonal-s91 c 4)
 (tonal-s93 c 4)(tonal-s93 c 4)))
 tonal-3 (gen-repeat 10 (activate-tonality (tonal-s93 c 4)))
 tonal-4 (activate-tonality '((tonal-s92 c 4)(tonal-s85 c 4)(tonal-s90 c 4)
 (tonal-s88 c 4)(tonal-s86 c 4))))

Create a series of tonalities based on the above Slonimsky
series reduced into a single octave compass.

A tonality that corresponds to the open strings of the cello,
to produce left-hand pizzicatos.

Define a tonal plan for the movement. Tonal-1 and
Tonal-4 consist of repetitions of a single tonality,
whereas the others suggest tonal movement from
zone to zone (e.g. phrase to phrase).

(setq symbol-pattern (but-last (gen-palindrome '(a b c d e f)))
 ; (a b c d e f e d c b)
 sym-pat (but-last (gen-palindrome (reverse '(a b c d e f)))))
 ; (f e d c b a b c d e)

(setq temp-1
 (gen-collect 0.13 10 :list
 '(gen-template nil 1 1 (length symbol-pattern))))
; ((x = = = = x x x = =) (= x x x x = x x x =) (= x x x = x x = x x) (x x = = = = = x = =)
; (x x = x = = x = x x) (x x = = = = x x x =) (x x x = = x x = = x) (= = = = = x x x x x)
; (= x = x x = = = = x) (x = = = = = x x = =))

(setq temp-2
 (gen-collect 0.15 10 :list
 '(gen-template nil 2 1 (length symbol-pattern))))

(setq temp-3
 (gen-collect 0.17 10 :list
 '(gen-template nil 1 1 (length symbol-pattern))))

(setq temp-4
 (gen-collect 0.14 5 :list
 '(gen-template nil 3 1 (length sym-pat))))

(setq s-pat-list (gen-repeat 10 (list symbol-pattern))
 s-patx-list (gen-repeat 5 (list sym-pat)))

(setq matx-1 (gen-process-list '(fill-template-swallow x y) temp-1 s-pat-list))
; ((a = = = = f e d = =) (= b c d e = e d c =) (= b c d = f e = c b) (a b = = = = = d = =)
; (a b = d = = e = c b) (a b = = = = e d c =) (a b c = = f e = = b) (= = = = = f e d c b)
; (= b = d e = = = = b) (a = = = = = e d = =))

(setq matx-2 (gen-process-list '(fill-template-swallow x y) temp-2 s-pat-list)
 matx-3 (gen-process-list '(fill-template-swallow x y) temp-3 s-pat-list)
 matx-4 (gen-process-list '(fill-template-swallow x y) temp-4 s-patx-list))

Create a pair of palindromic sequences. Note the
use of but-last to remove the final value, which
would otherwise duplicate the first note when the
series was repeated.

Create a series of templates in which each section is
the same length as the palindromes generated
above. The first three are based on 10 repetitions of
the first palindrome (symbol-pattern), the final
based on five repetitions of the second (sym-pat).

Create a series of repeats of each palindrome. These
can then be used in conjunction with the templates
above.

Filter the first palindrome using fill-
template-swallow . Here each (x)
value in the template will be filled
with the corresponding value in the
phrase.

(setq len-1 (gen-process '(symbol-repeat x y) (mapcar 'length matx-1) '(1/8) :list)
 len-1C (gen-process '(symbol-repeat x y) (mapcar 'length matx-4) '(1/8) :list))

;;;------------------

(setq len-1x
 (gen-process-list '(length-condense (align-to-symbol x y)) matx-1 len-1))
; ((-1/2 3/8 -1/4 1/8) (-1/8 3/4 -3/8) (-3/8 1/8 -3/8 3/8)

(setq matx-1x (do-section :all '(delete '= (find-beat x)) matx-1))
; ((e b) (b) (d d) (b e e) (c c) . . .

(setq len-2 (p-replace-sections '(= x x = x x = = x x) len-1x len-1)
 mat-2 (p-replace-sections '(= x x = x x = = x x) matx-1x matx-1))
;((1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8) (-1/8 3/4 -3/8) (-3/8 1/8 -3/8 3/8)
;((= = = = e f e = = b) (b) (d d) (= b c = e = e d c =) (c c) . . .

;; -----------------
(setq len-2x
 (gen-process-list '(length-condense (align-to-symbol x y)) matx-2 len-1))

(setq matx-2x (do-section :all '(delete '= (find-beat x)) matx-2))

(setq len-3 (p-replace-sections '(x x x = = = x x = = =) len-2x len-1)
 mat-3 (p-replace-sections '(x x x = = = x x = =) matx-2x matx-2))

;; -----------------

(setq len-3x
 (gen-process-list '(length-condense (align-to-symbol x y)) matx-3 len-1))

(setq matx-3x (do-section :all '(delete '= (find-beat x)) matx-3))

(setq len-4 (p-replace-sections '(= = x x = x = = x =) len-3x len-1)
 mat-4 (p-replace-sections '(= = x x = x = = x =) matx-3x matx-3))

;; --------------------

For each value in the generated materials
make a series of (1/8) lengths. Matx-2 and
matx-3 are omitted since they are the same
size as matx-1 (10 phrases length).

Condense the length content of each phrase
so that all consecutive rest symbols are
grouped together as a single negative value,
while all pitch symbols are grouped together
under positive values. So (= = a = a b)
becomes (-1/4 1/8 -1/8 1/4).

For each phrase delete all the rest symbols and
keep only the first pitch symbol that falls
immediately after a rest or at the start of a
phrase. So (a = = b c d = a =) becomes (a b a).

Replace selected sections of len-1 with those
from len-1x. Note that when a phrase in len-1x
such as (b) corresponds with (-1/8 3/4 –3/8) in
matx-1x the compiler will understand this to
mean that (b) has a duration of (3/4). The
negative values are ignored in the absence or
corresponding rest symbols.

(setq pizz-m (gen-process-list '(fill-template x y)
 (mapcar 'find-beat (mapcar 'template-invert temp-1))
 (gen-repeat 10 (list '(a b c d))))
 pizz-n (gen-process-list '(fill-template x y)
 (mapcar 'find-beat (mapcar 'template-invert temp-2))
 (gen-repeat 10 (list '(a b c d))))
 pizz-o (gen-process-list '(fill-template x y)
 (mapcar 'find-beat (mapcar 'template-invert temp-3))
 (gen-repeat 10 (list '(a b c d))))
 pizz-p (gen-process-list '(fill-template x y)
 (mapcar 'find-beat (mapcar 'template-invert temp-4))
 (gen-repeat 5 (list (reverse '(a b))))))
;; ----------------------

(setq pp '(35 30)
 p '(45 40)
 mp '(60 55)
 mf '(75 70)
 f '(96 90)
 ff '(115 110))

(setq dyn-1 (list mf p ff mf p ff f f mp f
 mp mp p pp p mp mf f mp p
 mf f mp f mf f mp mf ff mp
 f mf mp p mp))

;; score-template

(def-tonality
cello (append tonal-1 tonal-2 tonal-3 tonal-4)
pizz (gen-repeat 35 (activate-tonality (pizz-t c 3)))
)

(def-symbol
 cello (append (do-section '(= = = = = = x x = =) '(ornament-higher 5 (symbol-repeat 2 x)) mat-2)
 (do-section '(= = = = = x = = x x) '(ornament-higher 4 (symbol-repeat 2 x)) mat-3)
 (do-section '(x x = = x = x x = =) '(ornament-lower 3 (symbol-repeat 2 x)) mat-4)
 (do-section ' (= = = = x) '(ornament-lower 9 (symbol-repeat 2 x)) matx-4))
 pizz (append pizz-m pizz-n pizz-o pizz-p)
)

Invert the previously defined templates and then
execute find-beat so that only the first symbol after
a rest is included, so (x x x x = = = x x =) becomes
(x = = = = = = x = =). These values are then filled
with an open string (a b c d) as an ostinato-style
pizzicato.

Define a dynamic scheme for each phrase in each
section of the whole piece.

Begin to bring all the sections together, starting with tonality.
Note that the pizz tonality must remain the same throughout!

Bring together all the symbolic material with append. Also a
template is used with ornament functions to avoid repeated notes
and create a recurrent series of dance-like ornamentations.

(def-length
 cello (append (do-section '(= = = = = = x x = =) '(length-repeat 2 x) len-2)
 (do-section '(= = = = = x = = x x) '(length-repeat 2 x) len-3)
 (do-section '(x x = = x = x x = =) '(length-repeat 2 x) len-4)
 (do-section '(= = = = x) '(length-repeat 2 x) len-1C))

 pizz (append len-1 len-1 len-1 len-1C)
)

(def-velocity
 cello dyn-1
 pizz '(60)
)

(setq repeats '(2 2 1 2 2 1 1 1 2 1
 1 1 1 2 2 2 1 1 2 2
 1 1 2 2 1 2 1 1 2 3
 1 2 3 2 1))

(def-zone
cello (zone-expand repeats (z-ratio-sc (length-of cello)))
pizz (zone-expand repeats (z-ratio-sc (length-of cello)))
)

(def-channel
cello 1
pizz 2
)

(def-tempo 140)

(compile-instrument-p "ccl;output:" "dance-figures-3"
 cello
 pizz
)

Since the ornament functions add additional notes to the phrase
any corresponding note-length symbols need to be divided into
two with length-repeat.

Create repeating ‘zones’ of pitch, symbol and velocity, once
more for a dance-like effect.

;; Nine Studies in Movement (No.4 Ornamentation)
;; NB: This code generates the basic tonal structure that was
;; later ornamented by hand.

;; material

(create-tonality tonal-s85 '(c 4 e 4 f 4 f# 4 a# 4 b 4))
(create-tonality tonal-s87 '(c 4 d 4 f 4 f# 4 g# 4 b 4))
(create-tonality tonal-s89 '(c 4 d# 4 e 4 f# 4 a 4 a# 4))
(create-tonality tonal-s91 '(c 4 c# 4 e 4 f# 4 g 4 a# 4))
(create-tonality tonal-s93 '(c 4 c# 4 d# 4 f# 4 g 4 a 4))

(create-tonality tonal-s92 '(c 4 d 4 d# 4 f# 4 g# 4 a 4))
(create-tonality tonal-s90 '(c 4 d 4 e 4 f# 4 g# 4 a# 4))
(create-tonality tonal-s88 '(c 4 d& 4 f 4 f# 4 g 4 b 4))
(create-tonality tonal-s86 '(c 4 d& 4 f 4 f# 4 g 4 b 4))

(setq s90-1 (c-pitch-to-symbol (symbol-bundle 2 '(c 4 d 4 e 4 f# 4 g# 4 a# 4))))
; (a c e g i k)

(setq mat-90 (gen-intro 5 s90-1))
; (-k -i -g -e -c a c e g i k)

(setq 9-list
(gen-collect 0.12 9 :list '(gen-random nil 9 mat-90)))
; ((g -c -c -i i i k g a) (-i -k g -g -k -i -k c a) (-g -k i -k -c -c c g -k)
; (g k g e -i -k -c -c k) (a -c e -i -e g c -i k) (c c -e -c -c -e g a i)
; (-e -k -k c -e -g -k c a) (i e -g g a -c -g a c) (k -e -i -g -c -e e k e))

(setq 9-list-length (gen-process '(symbol-repeat x y)
 (mapcar 'length 9-list) '(1/4) :list))

 (setq len-list
 (do-section :all '(length-variate nil 4 2 x) 9-list-length))

;; score

(def-tonality
 cello (activate-tonality (chromatic d 4))
)

Convert Slonimsky pattern 9 into a series of symbols, where
C4 = a and so on.

Generate a five-note introduction to the phrase.

Create nine lists of nine pitches. For
each list, gen-random is used to make
nine selections from mat-90. G e n -
collect enables this selection process to
be executed nine times.

For each pitch create a corresponding 1/4 length
note.

Create 1/8 notes and rests using length-variate,
for example: (1/4 1/4 1/4) = (1/8 1/8 –1/4 1/4).

(def-symbol
cello 9-list
)

(def-length
cello len-list
)

(def-velocity
cello '(64)
)

(def-zone
cello (z-ratio-sc len-list)
)

(def-channel
 cello 1
)

(def-tempo 50)

(compile-instrument-p "ccl;output:" "ornament-1"
 cello
)

;; Nine Studies in Movement (No.5 Phrases)

; Functions

; See appendix A for all the bespoke functions used in this movement

; material

(setq s85 '(a -c -b g e f)
 s86 '(a -d -b g d f)
 s87 '(a -e -b g c f)
 s88 '(a -f -b g b f)
 s89 '(a -d -c g d e)
 s90 '(a -e -c g c e)
 s91 '(a -f -c g b e)
 s92 '(a -e -d g c d)
 s93 '(a -f -d g b d))

(setq s85-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s85)))))
 s86-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s86)))))
 s87-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s87)))))
 s88-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s88)))))
 s89-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s89)))))
 s90-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s90)))))
 s91-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s91)))))
 s92-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s92)))))

Cf-noise-white is used to create 256 samples of white noise (e.g. random numbers between
–1.0 and 1.0). These are then associated with symbols from each tonality – in this case s85
– essentially giving us 256 random pitches drawn from s85. Find-change looks for
repeated notes and changes the second into a rest (e.g. (a c c b) becomes (a c = b)). Create-
lists defines phrases beginning at a rest symbol (so (a c = b) becomes ((a c) (= b)), Delete-
lists then removes any lists with a length of only 1 character (e.g. single rests). Finally, c-
list-rotate will ‘rotate’ the content of random lists by one character (based on a random seed
of 0.1). Therefore (a b =) may become (= a b).

s93-x
 (c-list-rotate 0.1 (delete-lists 1 (create-lists (find-change
 (cf-noise-white 256 1.0 .37 s93))))))

(setq s-list (gen-random 0.1 41 (list-a-scale 0 8))) ;; order of slonimksy patterns
; (2 6 4 0 7 6 7 6 5 1 0 3 3 7 1 0 6 0 3 3 4 5 0 1 0 6 1 0 1 0 4 4 6 3 3 1 6 6 7 6 3)

(setq s-mix-list
 (flat-them (gen-process-list
 '(p-select x y) (list-a-scale 0 41) ; sequence slots
 (e-substitute
 (list s85-x s86-x s87-x s88-x s89-x
 s90-x s91-x s92-x s93-x)
 '(0 1 2 3 4 5 6 7 8) s-list))))

#| ;; s85-x
((g e -b -c) (= g -c g) (= f e) (= a) (= g) (e =) (f -c g =) (e a e f g -c g -c =)
(= g -b -c) (= -b) (= g -c e g) (e =) (-c =) (f -b -c e -b e g -b -c e -c g e -b g -c =)
(g -c g =) (= -b f e -b) (-c f -b e f g -b a g f g =) (e -c g e g =)
(f -b g -b g e -b e -c -b e -b a -c e g f e =) (= g a) (= e -c f) (-b -c g =) (e =)
(a -c -b =) (= -c) (a -b f e -b a g -b -c -b -c g -b g a g -b =) (g f a g e -b f -c =)
(= a f -b f e -c) (e =) (-b f =) (g a -b -c =) (g a -c a -c e =) (= g -b) (= g) (= -b)
(= g) (= -b e a f g -b e g f e -c f -c a) (-b e g a e =) (= -c g e) (= g -b a -c g -b e f -c)
(f e f g e -c -b e -b f a -c g -b a e -c e a g e -c a =))

;; s-mix-list
((g c -b -e) (= g -f g) (= e d) (= a) (= g) (b =) (d -e g =) (b a b e g -f g -f =)
(= g -c -e) (= -b) (= g -c e g) (b =) (-f =) (d -d -e c -d c g -d -e c -e g c -d g -e =)
(g -d g =) (= -b f e -b) (-f e -c b e g -c a g e g =) (e -c g e g =)
(f -b g -b g b -b b -f -b b -b a -f b g f b =) (= g a) (= d -d e) (-c -e g =) (e =)
(a -d -b =) (= -c) (a -c e b -c a g -c -f -c -f g -c g a g -c =) (g f a g d -b f -d =)
(= a f -b f e -c) (d =) (-b f =) (g a -c -d =) (g a -d a -d d =) (= g -c) (= g) (= -b) (= g)
(= -c b a e g -c b g e b -f e -f a) (-c b g a b =) (= -e g c) (= g -c a -f g -c b e -f)
(f b f g b -f -b b -b f a -f g -b a b -f b a g b -f a =))

|#

The material from this movement will be derived
from picking combinations of the nine sequences
defined above. First a series of random numbers
between 0 and 8 are chosen.

The selection list (s-list) is now used to create a
sequence in which each phrase in the series is
drawn from one of the nine phrase collections
s85-x to s93-x. To the left you can see how the
output for s85-x looks, compared with the
aggregate version s-mix-list.

(symbol-divide (mapcar 'length s-mix-list) 'setq 'x (flatten s-mix-list))

(setq x0 '(g c -b -e))
(setq x1 '(= g -f g))
(setq x2 '(= e d))
(setq x3 '(= a))
(setq x4 '(= g))
(setq x5 '(b =))
(setq x6 '(d -e g =))
(setq x7 '(b a b e g -f g -f =))
(setq x8 '(= g -c -e))
(setq x9 '(= -b))
(setq x10 '(= g -c e g))
(setq x11 '(b =))
(setq x12 '(-f =))
(setq x13 '(d -d -e c -d c g -d -e c -e g c -d g -e =))
(setq x14 '(g -d g =))
(setq x15 '(= -b f e -b))
(setq x16 '(-f e -c b e g -c a g e g =))
(setq x17 '(e -c g e g =))
(setq x18 '(f -b g -b g b -b b -f -b b -b a -f b g f b =))
(setq x19 '(= g a))
(setq x20 '(= d -d e))
(setq x21 '(-c -e g =))
(setq x22 '(e =))
(setq x23 '(a -d -b =))
(setq x24 '(= -c))
(setq x25 '(a -c e b -c a g -c -f -c -f g -c g a g -c =))
(setq x26 '(g f a g d -b f -d =))
(setq x27 '(= a f -b f e -c))
(setq x28 '(d =))
(setq x29 '(-b f =))
(setq x30 '(g a -c -d =))
(setq x31 '(g a -d a -d d =))
(setq x32 '(= g -c))
(setq x33 '(= g))
(setq x34 '(= -b))
(setq x35 '(= g))
(setq x36 '(= -c b a e g -c b g e b -f e -f a))
(setq x37 '(-c b g a b =))
(setq x38 '(= -e g c))
(setq x39 '(= g -c a -f g -c b e -f))
(setq x40 '(f b f g b -f -b b -b f a -f g -b a b -f b a g b -f a =))

Symbol-divide divides s-mix-list into a series of
variables prefixed with x. This means that we can
easily manipulate the entire sequence later in the
code.

(setq n-list (gen-random 0.1 34 (list-a-scale 0 41)))

(setq r-sym (eval-section-integer n-list 'x 'list)) ; randomized list

#|
((g a -c -d =) (= a f -b f e -c) (b a b e g -f g -f =) (= g -f g) ; 4
(f -b g -b g b -b b -f -b b -b a -f b g f b =) (e -c g e g =) ; 2
(f b f g b -f -b b -b f a -f g -b a b -f b a g b -f a =) (= -b) (= e d) ; 3
(= -b) (= g -f g) (-f e -c b e g -c a g e g =) (= -b f e -b) (= -c) ; 5
(g a -c -d =) (g c -b -e) (b =) (g c -b -e) (g a -c -d =) (= g -c -e) ; 6
(= e d) (d -e g =) (g c -b -e) (a -d -b =) (-c -e g =) (= g) (e -c g e g =) ; 7
(f -b g -b g b -b b -f -b b -b a -f b g f b =) (d -e g =) (= -b) (= -b) ; 4
(f b f g b -f -b b -b f a -f g -b a b -f b a g b -f a =) (= g) ; 2
(f -b g -b g b -b b -f -b b -b a -f b g f b =)) ; 1

|#

(init-rnd 0.127)

(setq output-all/model
'((rv)(rv)(rv)()
(fd)(se)
(rv)()()
()()()()(rv)
(rv)()()()()()
()()()()()()(se)
()(rv)()()
()()
(fd)))

(setq r-symx ; with expansions, cutting up of long phrases, retrogrades
 (do-section
 (mtypes-to-template 'fd output-all/model)
 '(filter-delete (pickn 1 x) x)
 (do-section
 (mtypes-to-template 'se output-all/model)
 '(symbol-list-expand x)
 (do-section
 (mtypes-to-template 'rv output-all/model)
 '(symbol-retrograde x) r-sym))))

Create 34 random values between 0 and 40 and then
assemble a series of phrases by picking the
corresponding phrases from x0 to x40.

This code is part of Nigel Morgan’s ‘scoresheet’ style of programming, which is
also used throughout Six Concertos and Piece d’Orgue. Each phrase in the
movement is represented as a pair of brackets. Any transformation to that phrase is
indicated by a two-letter ‘I function’. Here, rv directs that symbol order should be
reversed; se denotes symbol expansion and fd the deletion of all instances of a
random pitch symbol (filter-delete).

This code processes the above defined scoresheet
against r-sym making reversals, symbol expansions
and deletions as indicated by the composer.

(setq r-symwx
 (do-section (mtypes-to-template 'fd output-all/model)
 '(delete-lists 1 (c-list-rotate 0.1 (create-lists x))) r-symx))

(setq r-symxy (flat-them r-symwx))

#| ;; final phrase list

((= -d -c a g) (-c e f -b f a =) (= -f g -f g e b a b) (= g -f g) (f -b) (= -b) ;6
 (= b -b b -f -b b -b a -f b) (= f b) (i -b e -c g e g =) ; 3
(= a -f b g a b -f b a -b g -f a f -b b -b -f b g f b f) (= -b) (= e d) (= -b) ; 4
(= g -f g) (-f e -c b e g -c a g e g =) (= -b f e -b) (-c =) (= -d -c a g) (g c -b -e) ; 6
(b =) (g c -b -e) (g a -c -d =) (= g -c -e) (= e d) (d -e g =) (g c -b -e) (a -d -b =) ; 8
 (-c -e g =) (= g) (i -b e -c g e g =) (f -b g -b g b -b b -f -b b -b a -f b g f b =) ; 4
(= g -e d) (= -b) (= -b) (f b f g b -f -b b -b f a -f g -b a b -f b a g b -f a =) (= g) ; 5
(f -b g -b g) (= -b) (= -f -b) (= -b a -f) (= g f)) ; 5
|#

(setq r-len (gen-process '(symbol-repeat x y) (mapcar 'length r-symxy) '(1/8) :list))

(setq output-all/vc
'((gi)(cl)()(gt xl)(gt lr)(cl)
 (sr xl)(xl gi)(dn xl)
 (lv)(cl)(cl)()
 (gt xl)(fg xl)(gi xl)(cl)(gi xl)(gc xl)
 (cl)(sr xl)(sr xl)(gi xl)(gi xl)(gc xl)(sr xl)(sr xl)
 (dn xl)()(up xl)(d1 lv)
 (gi)(cl)()(lv)(xl sr)
 (gt xl)(xl sr)(xl sr)(gi xl)(gc xl)))

(setq pp '(35 30)
 p '(45 40)
 mp '(60 55)
 mf '(75 70)
 f '(96 90)
 ff '(115 110))

The symbol expand function results in nested lists,
such as ((= - b a f)(= g f)). This code processes the
lists removing any nesting with flat-them as well as
getting rid of any redundant rest symbols created by
a further execution of create-lists.

Define the default length for each
symbol as being 1/8.

This is a second scoresheet for processing both the length and pitch
symbols. Some of the I Functions indicated here relate to pitch and
some to length. Sometimes pairs are necessary, for example fg
indicates symbol-figurate, which extends the number of symbols
in a phrase. It is therefore paired with xl – extend lengths – which
will ensure that there are corresponding note lengths to indicate the
ornamental figuration of the phrase.

(setq dyn-1 (list p mp mf p mp p
 mp p mf
 f p mp p
 mf f mp mf mp mf
 f mp mf p mp mf mp mf
 f mp mf f
 p mp mf f mf
 f mp p mp mf))

(setq zone-ex
'(1 1 1 1 1 1
 1 1 1
 1 1 1 1
 2 1 1 1 1 1
 1 1 1 1 1 1 1 1
 2 1 1 1
 1 1 1 1 1
 1 1 1 1 1
))

;; symbol processing

(init-rnd 0.127)

(setq vc-sym
(do-section
(mtypes-to-template 'st output-all/vc)
'(sequence-transpose x)
(do-section
(mtypes-to-template 'se output-all/vc)
'(symbol-list-expand x)
(do-section
(mtypes-to-template 'd1 output-all/vc)
'(distort-transpose 1 x)
(do-section
(mtypes-to-template 'gp output-all/vc)
'(gen-palindrome x)
(do-section
(mtypes-to-template 'gc output-all/vc)
'(g-coda (length x) x)
(do-section
(mtypes-to-template 'gi output-all/vc)
'(g-intro (length x) x)

Throughout the Studies, zone lengths are analogous to
the lengths of phrases. Zones can also be expanded to
create repetitions of the material they contain. Here
material for zone expansion is defined.

The following code processes the pitch material in accordance
to the I Functions indicated on the scoresheet. So in the
highlighted example an instance of (st) in the scoresheet will
cause the sequence-transpose function to be executed on the
corresponding phrase.

(do-section
(mtypes-to-template 'gt output-all/vc)
'(g-tremelo x)
(do-section
(mtypes-to-template 'sr output-all/vc)
'(symbol-repeat 2 x)
(do-section
(mtypes-to-template 'd2 output-all/vc)
'(distort-transpose -1 x)
(do-section
 (mtypes-to-template 'su output-all/vc)
 '(symbol-upward x)
(do-section
 (mtypes-to-template 'sd output-all/vc)
 '(symbol-downward x)
(do-section
(mtypes-to-template 'sh output-all/vc)
'(symbol-harmonize nil 'mix -7 5 x)
(do-section
 (mtypes-to-template 'mr output-all/vc)
 '(make-rest x)
(do-section
 (mtypes-to-template 'ts output-all/vc)
 '(symbol-thin 2 5 x nil)
(do-section
 (mtypes-to-template 'fg output-all/vc)
 '(symbol-figurate x)
(do-section
(mtypes-to-template 'up output-all/vc)
'(upward x)
(do-section
(mtypes-to-template 'dn output-all/vc)
'(downward x)
(do-section
(mtypes-to-template 'ud output-all/vc)
'(up-down x)
(do-section
(mtypes-to-template 'du output-all/vc)
'(down-up x)
(do-section
(mtypes-to-template 'fl output-all/vc)
'(floating x)
r-symxy)))))))))))))))))))))

;; length processing here

(setq r-len
 (gen-process '(symbol-repeat x y) (mapcar 'length vc-sym) '(1/8) :list))

(init-rnd 0.127)

(setq vc-len
(do-section (mtypes-to-template 'rr output-all/vc)
'(l-rest-revert x)
(do-section (mtypes-to-template 'lv output-all/vc)
'(length-variate nil (get-random 2 4) 2 x)
(do-section (mtypes-to-template 'xl output-all/vc)
'(change-length :divide 2 x :ratio)
(do-section (mtypes-to-template 'cl output-all/vc)
'(change-length :times 2 x :ratio)
 (do-section (mtypes-to-template 'zl output-all/vc)
'(change-length :times 4 x :ratio)
(do-section (mtypes-to-template 'lr output-all/vc)
'(length-repeat 2 x)
 r-len)))))))

;; score

(def-tonality
cello (activate-tonality (chromatic e& 4))
)

(def-symbol
cello vc-sym
)

(def-length
cello vc-len
)

(def-velocity
cello dyn-1
)

(def-zone
cello (zone-expand zone-ex (z-ratio-sc vc-len))
;(5/4 7/4 9/8 1/2 1/2 1/2 11/8 3/8 27/16 3/1 1/2 3/4 1/4 1/1 3/2 5/8 1/2 5/8 1/2 1/2
; 1/2 5/8 1/2 3/8 1/2 1/2 1/2 1/1 1/4 21/16 19/8 1/1 1/2 1/4 3/1 1/4 5/8 1/4 3/8 1/2 3/8)
)

(def-channel
cello 1
)

(def-tempo 90)

(compile-instrument-p "ccl;output:" "phrases-1"
cello
)

Appendix A - Additional functions

;; These will need to be evaluated before running the code for movement five.

;; zone expand

(defun zone-expand (x-by zne-lis) ; adjusted 15.3.04
"expanding values of chosen zone-lengths to create repeats"
 (prog (out)
 loop
 (cond ((null zne-lis) (return (get-ratio-sc out))))
 (setq out (append out (list (* (car x-by) (get-ratio-cl (car zne-lis))))))
 (setq x-by (cdr x-by))
 (setq zne-lis (cdr zne-lis))
 (go loop)))

;; length variate

(defun length-variate (seed count divide l-lengths)
"produces rhythmic variants whilst keeping symbol pattern intact provided division is by 2"
 (diagnostic2 "length-variate" cr)
(if (eq count 0)
 (l-rest-revert l-lengths)
 (l-divide seed count divide nil nil
 (symbol-shuffle (length-masking count l-lengths seed)))))

;; gen coda

(defun gen-coda (n lis &optional t-length)
"enables generation of further n symbols in a sequence
 defaults to chromatic"
(if t-length
 (append lis (symbol-trim n (symbol-transpose t-length lis)))
 (append lis (symbol-trim n (symbol-transpose 12 lis)))))

;; gen intro

(defun gen-intro (n lis &optional t-length)
"enables generation of further n symbols in a sequence
 defaults to chromatic"
(if t-length
 (append (symbol-trim-r n (symbol-transpose t-length lis)) lis)
 (append (symbol-trim-r n (symbol-transpose -12 lis)) lis)))

;; eval section integer
(defun eval-section-integer (section-list symbol-affix how)
"variant of eval-section enables use of integer lists - x0 x1 x2 etc"
(diagnostic2 "eval-section-r" cr)
 (prog (out)
 loop
 (cond ((null section-list)
 (return (cond ((equal how 'append) (eval-list out))
 ((equal how 'list) (mapcar 'eval out))))))
 (setq out (append out
 (list (compress (list
 symbol-affix (car section-list))))))
 (setq section-list (cdr section-list))
 (go loop)))

;; gen process list
(defun gen-process-list (f-expr values patterns)
"processes a list of lists with a list of differing values
- gen-process only allows a single list to be processed "
(diagnostic2 "gen-process-list" cr)
(setq f-expr (eval (list 'function
 (append '(lambda) (list '(x y) f-expr)))))
 (prog (out)
 (let* ((initial diagnose-verbose)
 (diagnose-verbose nil))
 (setq out (mapcar f-expr values
 patterns))
 (setq diagnose-verbose initial))
 (return out)))

;; create lists

(defun create-lists (lisx)
"creates lists using rest symbols to mark divisions"
 (symbol-divide
 (reverse (mapcar 'abs
 (do-section :all '(apply '- x)
 (symbol-divide '(2 (-1)) nil nil
 (reverse (append (e-position '= lisx)
 (list (length lisx))))))))
 nil nil lisx))

;; delete lists

(defun delete-lists (value lisy)
 "delete lists equal to or below a length value - adjunct to create-lists"
 (prog (out el)
 loop
 (cond ((null lisy) (return (delete 'nil out))))
 (setq el (car lisy))
 (setq out (append out
 (list (cond ((>= value (length el)) ())
 (t el)))))
 (setq lisy (cdr lisy))
 (go loop)))

;; c-list-rotate

(defun c-list-rotate (seed lisz)
"rotates contents of lists at random except for the first list - necessary part of create-lists"
(do-section (p-replace nil 'first '= (gen-template seed 1 1 (length lisz)))
 '(symbol-scroll -1 x) lisz))

;; Flat them

(defparameter *flat-them-stack* nil)

(defun flat-them-sup (l)
 (cond ((null l) nil)
 ((is-flat l)
 (push l *flat-them-stack*))
 (t
 (flat-them-sup (car l))
 (flat-them-sup (cdr l)))))

(defun flat-them (l)
 (setq *flat-them-stack* nil)
 (flat-them-sup l)
 (nreverse *flat-them-stack*))

;; Mtypes to template

(defun mtypes-to-template (mtypes array-output)
"produces a template list from array-output equivalent to instrument-to-string"
 (do-quietly
(e-substitute '(x) '(b)
 (e-substitute '(=) '(a)
 (mapcar 'integer-to-symbol
 (flatten (mapcar
 (function (lambda (x)
 (e-count mtypes x))) array-output)))))))

;; Symbol list expand

(defun symbol-list-expand (lis &optional seed)
"expands symbol-list in using by selection of content range
 and randomized repetition"
(if seed
(init-rnd seed))
(if (is-rest (car lis))
 (let ((selection (pick-random '(:this :that :other))))
 (case selection
 (:this
 (append lis (symbol-trim-r (get-random 1 (- (length lis) 1)) lis)))
 (:that
 (append (symbol-trim (get-random 1 (- (length lis) 1)) lis)
 (cdr lis)))
(:other
 (append lis (distort-transpose 1
 (symbol-trim-r (get-random 1 (- (length lis) 1)) lis))))))
(let ((selection (pick-random '(:this :that :other))))
 (case selection
 (:this
 (append (symbol-trim (get-random 1 (- (length lis) 1)) lis) lis))
 (:that
 (append (symbol-trim-r (get-random 1 (- (length lis) 1)) (reverse lis))
 (cdr lis)))
 (:other
 (append (but-last (reverse (distort-transpose 1
 (symbol-trim (get-random 1 (- (length lis) 1)) lis))))
 lis))))))

;; Distort transpose

(defun distort-transpose (value pattern &optional rnd)
"distorts a phrase incrementally by transposition"
(let ((out) (element rnd))
(dotimes (i (length pattern))
(if rnd
(setq element (transpose-symbol
 (nth i pattern)
 (pick-random (g-integer 0 (length pattern)))))
(if (< 1 value)
(setq element (transpose-symbol
 (nth i pattern) (+ i value)))
(if (minusp value)
(setq element (transpose-symbol
 (nth i pattern) (* i value)))
(setq element (transpose-symbol
 (nth i pattern) i)))))

(push element out))
(nreverse out)))

;; Pickn

(defun pickn (n lis)
 (prog (out)
 (dotimes (i n)
 (setq out (append out
 (list (pick-random lis)))))
 (return out)))

;; Downward

(defun downward (lis)
 (flatten
(do-section :all '(symbol-inversion 'a x)
 (mapcar 'symbol-upward (gen-variants-tx nil (get-random 2 4) nil lis)))))

;; Gen variants tx

(defun gen-variants-tx (seed n p pat)
 (diagnostic2 "gen-variants-tx" cr)
 (prog (out temp)
 (if (null pat) (return nil))
 (setq temp diagnose-verbose)
 (setq diagnose-verbose nil)
 (if (null p) (setq p 1))
 (if seed (init-rnd seed))
 (for i p 1 n nil
 (setq out
 (append out (list (symbol-transpose i
 (gen-random-successive (rnd)
 (get-random 2 (length pat)) pat))))))
 (setq diagnose-verbose temp)
 (return (append (list pat) out))))

;; Symbol upward

(defun symbol-upward (lis)
(fill-template lis
(ornament-higher 12 (sort-ascending (filter-delete '= lis)))))

;; Upward

(defun upward (lis)
 (flatten (mapcar 'symbol-upward (gen-variants-tx nil (get-random 2 4) nil lis))))

;; Symbol figurate

(defun symbol-figurate (lis)
"figurates from within the symbols of the source pattern"
(ornament-lower 12 ; adds chromatic inflections
(symbol-interleave lis (find-change (nthcdr (length lis) (gen-variants nil 1 lis))))))

;; G-tremelo
(defun g-tremelo (lis)
"adds tremelo to a phrase doubling its length -
takes the tremelo notes from first or last symbols in the list"
(if (is-rest (car lis))
 (add-tremelo lis (list (last lis)))
 (append (but-last (add-tremelo lis (list (first lis)))) '(=))))

;; g-intro

(defun g-intro (value lis)
"use with length-repeat"
 (prog (out el)
 (setq el (gen-intro value lis))
 (setq out
 (cond ((is-pause-symbol
 (car el))
 (append '(=) (p-remove value el)))
 (t (append (p-remove (- value 1) el) '(=)))))
 (return out)))

;; g-coda

(defun g-coda (value lis)
"use with length-repeat"
 (prog (out el)
 (setq el (gen-coda value lis))
 (setq out
 (cond ((is-pause-symbol
 (car el))
 (append '(=) (p-remove value el)))
 (t (append (p-remove (- value 1) el) '(=)))))
 (return out)))

Appendix B

In the composition of Studies in Movement the code has generally been written to create finished compositions with
complete pitch, length and dynamic schemes in place. The exceptions to this being:

1) Continuum – transposed bars

In the editing of the work it was decided that transpositions would add more life to a movement that was generally
centred around a single octave. While these transpositions could have easily been incorporated into the code the decision
was made at a later stage in the editing process of the piece.

Original output from the code for Continuum, showing passages transposed in the final score.

2) Ornamentation

The code for ornamentation provides the skeletal structure for a piece which a player may ornament as s/he sees fit. In
the score for Studies in Movement, Nigel Morgan has provided his own ornamented version based on figures common to
Turkish Maqâm forms of improvisation on the ud.

Initial phrase of the movement as generated by SCOM, and consequent ornamental interpretation.

